Készítette: Tóth Krisztián. Web: http://krissz.hu

Xenon

54
131.3
-
Xe
5p6
Xenon
Alapadatok
Név, vegyjel, rendszám xenon, Xe, 54
Elemi sorozat nemesgázok
Csoport, periódus, mező 18, 5, p
Megjelenés színtelen
Atomtömeg 131,293(6) g/mol
Elektronszerkezet [Kr] 4d10 5s2 5p6
Elektronok héjanként 2, 8, 18, 18, 8
Fizikai tulajdonságok
Halmazállapot gáz
Sűrűség (0 °C, 101,325 kPa)
5,894 g/L
Olvadáspont 161,4 K
(-111,7 °C, -169,1 °F)
Forráspont 165,03 K
(-108,12 °C, -162,62 °F)
Olvadáshő 2,27 kJ/mol
Párolgáshő 12,64 kJ/mol
Moláris hőkapacitás (25 °C) 20,786 J/(mol·K)
Kritikus nyomás 5,84 MPa
Kritikus hőmérséklet 289,8 K (16,6 °C)
Atomi tulajdonságok
Kristályszerkezet köbös lapcentrált
Oxidációs állapotok 0, +2, +4, +6
(ritkán több mint 0)
(gyengén savas oxid)
Elektronegativitás 2,6 (Pauling-skála)
Ionizációs energia 1.: 1170,4 kJ/mol
Atomsugár (számított) 108 pm
Kovalens sugár 130 pm
Van der Waals-sugár 216 pm
Egyéb jellemzők
Mágnesség nem mágneses
Hővezetési tényező (300 K) 5,65 mW/(m·K)
Hangsebesség (liquid) 1090 m/s
CAS-szám 7440-63-3

A Xenon bővebb leírása

A xenon egy kémiai elem, vegyjele Xe, rendszáma 54. Színtelen, szagtalan, nehéz nemesgáz, előfordul kis mennyiségben a Föld atmoszférájában is[1] (9·10−5 térfogatszázalék, 4·10−5 tömegszázalék). Bár kémiailag általában közömbös, ismert néhány reakciója, például melynek során xenon-hexafluoroplatinát, az elsőként előállított nemesgázvegyület keletkezik.[2][3][4]

A természetben előforduló xenonnak kilenc stabil izotópja van. Ezen felül további 40 nem stabil, radioaktív izotópja létezik. A xenon izotópjainak aránya fontos eszköz a naprendszer történetének vizsgálatakor.[5] A xenon-135 maghasadás következtében jön létre, és az atomreaktorokban neutronelnyelőként viselkedik.[6]

A xenont ívlámpákban[7] és vakukban,[8] illetve általános érzéstelenítőként is alkalmazzák.[9] Az első excimerlézerek xenon dimer molekulát (Xe2) használtak aktív közegként,[10] az első lézerekben pedig xenon villanólámpákat használtak pumpálásra.[11] A xenont a feltételezett gyengén kölcsönható nehéz elemi részecskék (WIMP-ek) felkutatásában is alkalmazzák,[12] valamint ezt használják az űreszközök ionhajtóművének hajtóanyagaként.[13]

Története

A xenont William Ramsay és Morris Travers fedezte fel 1898. július 12-én Angliában, nem sokkal azután, hogy felfedezték a kriptont és a neont. A cseppfolyósított levegő elpárologtatása után visszamaradt anyagban találták meg.[14][15] Ramsay azt javasolta, hogy az idegen, külföldi vagy vendég jelentésű, görög eredetű xenos semleges nemű változata után xenonnak (ξένον) nevezzék el az új elemet.[16][17] 1902-ben Ramsey úgy becsülte, a xenon alkotja a Föld atmoszférájának húszmilliomod részét.[18]

Xenonvaku

Az 1930-as években Harold Edgerton mérnök elkezdte felkutatni a villódzó fény technológiáját, ami a gyors fényképezéshez elengedhetetlen volt. Így jutott el a xenonvaku feltalálásáig, amiben úgy hoz létre fényt, hogy egy xenon gázzal töltött csövön keresztül elektromosságot vezet keresztül. Ezzel a technológiával 1934-ben Edgerton már egy mikromásodperces hosszúságú villanást is képes volt előállítani.[7][19][20]

1939-ben ifjabb Albert R. Behnke elkezdte a mélytengeri búvároknál a merüléssel összefüggésben kialakuló „részegség” okait kutatni. Alanyain úgy kísérletezett, hogy különböző levegőkeverékeket kellett belélegezniük, és felfedezte, hogy ez okozza a búvárok mélységérzetének változását. Eredményeiből azt a következtetést vonta le, hogy a xenon gázt lehet érzéstelenítőként alkalmazni. Bár Oroszországban Lazarev már 1941-ben tanulmányozta a xenon érzéstelenítő hatásait, először a nemesgáz ilyen hatását 1946-ban J. H. Lawrence egyik tanulmánya erősítette meg. Ő egereken végzett kísérleteket. A xenont műtéti érzéstelenítőként először 1951-ben Stuart C. Cullen alkalmazta, aki ennek segítségével két páciensen sikeresen műtétet hajtott végre.[21]

1960-ban John H. Reynolds felfedezte, hogy több meteorit esetében izotópanomália mutatható ki, mivel túl sok xenon-129-et tartalmaznak. Mindebből arra következtetett, hogy ez a jód-129 radioaktív bomlásterméke lehet. Ezt az izotópot a kozmikus sugárzás által kiváltott hasadás és a maghasadás következtében időben lassan jött létre, nagy mennyiségben azonban csak egy szupernóva felrobbanásakor jöhet létre. Mivel a I129 felezési ideje kozmikus egységekben mérve rövid – csupán 16 millió év –, ebből az következik, hogy rövid idő telt el a robbanás és a meteoritok megszilárdulása között. A két esemény (a szupernóva robbanás és a gázfelhő megszilárdulása) között eltelt idő azt bizonyítja, hogy ezek a naprendszer történetének kezdetekor történtek, mivel a I129 izotóp valószínűleg a naprendszer kialakulása előtt nem sokkal létrejött, s a napgáz felhőjét egy másik izotópforrás telítette be.[22][23]

Hosszú ideig úgy gondolták, hogy a xenon és a hozzá hasonló többi nemesgáz kémiailag közömbös, és nem alkotnak vegyületeket. Azonban Neil Bartlett mialatt a University of British Columbia oktatója volt, felfedezte, hogy a platina-hexafluorid (PtF6) olyan erős oxidálószer, hogy oxidálni képes az oxigén gázt (O2), dioxigenil-hexafluoroplatinát képződése (O+2[PtF6]) közben.[24] Mivel az O2 és a xenon első ionizációs energiája majdnem megegyezik, Bartlett felismerte, hogy a platina-hexafluorid képes lehet a xenont is oxidálni. 1962. március 23-án elegyítette a két gázt, és létrehozta az első ismert, nemesgáztartalmú vegyületet, a xenon-hexafluoroplatinátot.[25][4] Bartlett úgy gondolta, hogy ennek képlete Xe+[PtF6] lehet, de későbbi munkák kimutatták, hogy valószínűleg különböző xenontartalmú sók keveréke lehetett.[26][27][28] Azóta számos más xenonvegyületet fedeztek fel,[29] és több más nemesgáznak – így például az argonnak, a radonnak és a kriptonnak – is kimutatták már vegyületeit. Ezek közé tartozik az argon-fluorhidrid (HArF),[30] a kripton-difluorid (KrF2),[31][32] és a radon-difluorid.[33]

Előfordulása

A xenon a Föld légkörében nyomgáznak számít, aránya 0,087±0,001 ppm (μl/l), vagy nagyjából 1/11 500 000 arányban fordul elő,[34] és megtalálták forrásokból kijövő gázok között is. A xenon néhány radioaktív változata, mint például a 133Xe és a 135Xe úgy jön létre, hogy neutronnal besugározzák a reaktorban lévő hasadóanyagot.[2]

A xenont általában a levegő oxigénre és nitrogénre történő szétválasztásának melléktermékeként állítják elő. Miután a forráspontok eltérését kihasználva külön edényekben összegyűjtötték a nitrogént és a folyékony oxigént, az utóbbiban kis mennyiségű kriptont és xenont lehet találni. Egy újabb, hasonló hátterű szétválasztás során az oxigént fel lehet úgy dúsítani, hogy 0,1–0,2% kripton/xenon együttes koncentrációt lehessen kimutatni. Ezt szilikagél vagy desztilláció segítségével ki lehet nyerni a folyadékból. Végül a kripton/xenon keveréket egy újabb desztillációval lehet részeire szedni.[35][36] A levegőből egy liter xenon kinyeréséhez 220 wattóra energiára van szükség.[37] A világ xenontermelését 1998-ban 5000–7000 m3-re becsülték.[38] Alacsony koncentrációjának köszönhetően a xenon sokkal drágább mint a nála könnyebb nemesgázok. 1999-ben Európában 1 liter xenon ára 10, míg a kriptoné 1, a neoné pedig 0,2 € volt.[38]

A xenon a Nap, a Föld atmoszférájában valamint az aszteroidákban és az üstökösökben viszonylag ritka. A Mars légrétegében a xenon koncentrációja hasonlít a földi értékhez, 0,08 milliomod rész,[39] azonban itt nagyobb a 129Xe aránya mint akár a Földön akár a Napnál. Mivel ez az izotóp radioaktív bomlás eredményeképpen jön létre, az eredmény arra utalhat, hogy a Mars a kialakulását követő első 100 millió év során elvesztette légkörének jelentős részét.[40][41] Ezzel ellentétben a Jupiter légkörének kimagaslóan nagy a xenon tartalma, 2,6-szor annyi, mint a Napé.[42] Ennek a magas koncentrációnak még nincs felderítve az oka, de lehet, hogy a korai és gyors bolygóképződések lehettek, melyek során sok apró, csillagászati mérték alatti test jött létre. Ez még azelőtt történhetett, hogy Naprendszerünk protoplanetáris korongja elkezdett volna fölmelegedni.[43] (Máskülönben nem lehetett volna xenont észlelni a bolygóképződés korabeli jégben.) A Naprendszerben a xenon összes izotópjának a Naprendszer teljes tömegéhez viszonyított aránya 1,56·10−8.[44] A földi alacsony xenon szintet részben talán azzal is lehet magyarázni, hogy a kvarcban a xenon kovalens kötéssel kapcsolódik az oxigénhez, s emiatt távozik kevesebb xenon a légkörbe.[45]

A többi, kisebb tömegű nemesgázzal ellentétben a csillagokban lejátszódó megszokott nukleoszintézis során xenon nem jön létre. Az 56-os rendszámú vasnál nehezebb atomok fúziós előállításához olyan sok energia szükséges, hogy abból a csillag nem jut energiához, ha xenont hoz létre.[46] Ezzel ellentétben szupernóva robbanás után nagy mennyiségben lehet xenont mérni.[47]

Jellemzői

Egy xenon atomot az jellemez, hogy 54 protonja van. Standard hőmérsékleten és nyomáson a közönséges xenongáz sűrűsége 5,761 kg/m3, ami nagyjából négy és félszerese a földi légkör felszíni 1,217 kg/m3-es sűrűségének..[48] Folyadékként sűrűsége elérheti a 3,100 g/ml értéket is. A legmagasabb ez az érték a hármaspontjánál.[49] Hasonló körülmények között a szilárd xenon sűrűsége – 3,640 g/cm3 – nagyobb, mint a gránit átlagos sűrűsége, ami 2,75 g/cm3.[49] Több gigapascal nyomás alkalmazásával a xenon fémes fázisba kényszerül.[50]

A szilárd xenon lapcentrált köbös rácsa nyomás hatására szoros illeszkedésű hexagonális kristályokká alakul, és 140 GPa környékén fémes jellegűvé kezd válni anélkül, hogy a hexagonális fázis térfogata észrevehetően megváltozna. 155 GPa nyomás alatt a xenon teljesen fémessé válik. A fémes xenon égkék színű, mivel elnyeli a vörös fényt és a átengedi a látható fény más frekvenciájú sugarait. Ez a viselkedés a fémek esetén szokatlan, és az a magyarázata, hogy a fémes xenon elektronsávjai között viszonylag kicsi a távolság.[51][52]

Xenon kisülési csőben

Tulajdonságai

A xenon nem rendelkezik szabad vegyértékelektronnal, ezért nemesgáznak vagy inert gáznak hívják. Habár inert gáz, ez mégsem a megfelelő kifejezés, ugyanis a xenonnak legalább 80 vegyülete ismert. Egy gázzal töltött csőben a xenon kék fénnyel sugároz, amikor a gáz részecskéi elektromosság által gerjesztve vannak.

Forráspontja nagy atomtömege ellenére is nagyon alacsony (150 K alatt van).

Vegyületei

Neil Bartlett 1962-es felfedezése után, mely szerint a xenon képes kémiai vegyületeket képezni, nagy számú xenon vegyületet fedeztek fel és írtak le. Csaknem minden ismert xenon vegyületben előfordul a nagy elektronegativitású fluor- vagy oxigénatom.[53]

Halogenidek

A síkalkatú molekula modellje, a kék színű központi atomhoz (Xe) szimmetrikusan kapcsolódik négy (fluor)atom.
Xenon-tetrafluorid
Átlátszó kocka alakú kristályok petri-csészében.
XeF4 kristályok, 1962

A xenonnak három fluoridja ismert: XeF2, XeF4 és XeF6. Csaknem minden xenon vegyület szintézise fluoridokból indul ki.

A szilárd, kristályos difluorid XeF2 fluor és xenon gáz keverékéből képződik ultraibolya fény hatására.[54] A reakcióhoz normál napfény is elegendő.[55] A XeF2 nagy hőmérsékleten, hosszú ideig tartó melegítésével NiF2 katalizátor jelenlétében XeF6 keletkezik.[56]XeF6 NaF jelenlétében végzett hőbontása során nagy tisztaságú XeF4 jön létre.[57]

A xenon-fluoridok fluoridion akceptorként és donorként viselkednek, így például XeF+ és Xe2F3+ kationokat, valamint XeF5, XeF7 és XeF82− anionokat tartalmazó sókat képezhetnek. A zöld színű, paramágneses Xe2+ a XeF2 xenon gázzal történő redukciója során keletkezik.[53]

A XeF2 átmenetifém-ionokkal koordinációs komplexek képzésére is képes. Eddig több mint 30 ilyen komplexet állítottak elő és jellemeztek.[56]

Míg a xenon fluoridjai jól leírt vegyületek, a többi halogenid – a XeCl2 diklorid kivételével – nem ismert. A beszámolók szerint a xenon-diklorid endoterm, színtelen, kristályos vegyület, mely 80 °C-on elemeire bomlik. Xenon, fluor és szilícium- vagy szén-tetraklorid keverékének nagyfrekvenciás besugárzásával állítható elő.[58] Kétségek merültek fel azonban azzal kapcsolatban, hogy a XeCl2 valódi vegyület-e, vagy csak egy van der Waals molekula, mely gyengén kötött Xe atomokat és Cl2 molekulákat tartalmaz.[59] Elméleti számítások alapján a XeCl2 lineáris molekula kevésbé stabil, mint a van der Waals komplex.[60]

Oxidok és oxohalogenidek

A xenonnak csak két oxidja ismert: a xenon-trioxid (XeO3) és a xenon-tetroxid (XeO4). Mindkét vegyület rendkívül robbanásveszélyes és erélyes oxidálószer. A xenon-dioxidot (XeO2) mindezidáig nem sikerült előállítani – csak a XeOO+ kationt tudták azonosítani szilárd argonban infravörös spektroszkópia segítségével.[61]

A xenon közvetlenül nem reagál oxigénnel, a trioxid a XeF6 hidrolízise során keletkezik:[62]

XeF6 + 3 H2OXeO3 + 6 HF

A XeO3 gyenge sav, lúgokban instabil xenát sók keletkezése közben oldódik, ezekben HXeO4 anion található. Ezek az instabil sók könnyen diszproporcionálódnak xenon gázzá és perxenát sókká, melyek XeO4−6 aniont tartalmaznak.[63]

Bárium-perxenátból tömény kénsavval reagáltatva előállítható a gázállapotú xenon-tetroxid:[58]

Ba2XeO6 + 2 H2SO4 → 2 BaSO4 + 2 H2O + XeO4

A bomlás megakadályozására az így előállított xenon-tetroxidot gyorsan lehűtve halványsárga szilárd anyagot kapnak, mely −35.9 °C feletti hőmérsékleten robbanásszerűen xenon és oxigén gázra bomlik.

Számos xenon-oxofluorid ismert, ezek közé tartozik a XeOF2, a XeOF4, a XeO2F2 és a XeO3F2. XeOF2 OF2 és xenon gáz alacsony hőmérsékleen végrehajtott reakciójában keletkezik. Előállítható XeF4 részleges hidrolízisével is. −20 °C-on XeF2 és XeO2F2 képződése közben diszproporcionálódik.[64]XeOF4 a XeF6 részleges hidrolízise során [65] vagy XeF6 és nátrium-perxenát (Na4XeO6) reakciójában keletkezik. Az utóbbi reakcióban kis mennyiségben XeO3F2 is képződik. A XeOF4 CsF-dal reagálva XeOF5 aniont képez,[64][66] míg a XeOF3-ból alkálifém-fluoridokkal – KF, RbF és CsF – reagálva XeOF4 anion keletkezik.[67]

Felhasználási területek

Ezt a gázt a legszélesebb körben xenonlámpa töltőgázaként alkalmazzák. Ilyen berendezést tartalmaznak többek között egyes vakuk és stroboszkópok. A xenonívlámpák színhőmérséklete megközelítőleg azonos a déli napéval, ezért napszimulátorokban, és például IMAX filmvetítő rendszerekben is használatosak.